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INTRODUCTION
Medical Parasitology is the field in medicine 

dealing with globally distributed chronic, serious and 
even deadly parasitic infections affecting humans[1]. 
Parasites are major etiological agents of neglected 
tropical diseases (NTDs) that are affecting mainly 
rural localities in low-income countries. Among them, 
the WHO recognized Chagas’ disease, African sleeping 
sickness, leishmaniasis, onchocerciasis, lymphatic 
filariasis, echinococcosis, neurocysticercosis and 
schistosomiasis. They predominate in Africa, Asia and 
South America especially with poor sanitation and 
animal contact[2,3].

Artificial intelligence (AI) has been introduced 
to serve the aiding of diagnosis, management, and 
control of parasitic diseases. The AI concept goes back 
to Alan Turing (1950) and was first described in 1956 
by John McCarthy as “The Science of Making Intelligent 
Machines”[4]. In medicine, AI dramatically evolved 
over the last 50 years, with many subtypes that 
include machine learning (ML), deep learning (DL), 
computer vision, and natural language processing. 

In fact, AI opened new avenues in various fields 
in medicine, helping to personalize management, 
provide predictive models for diagnosis and treatment 
responses, serve preventative medicine, enhance 
accuracy of diagnostic modalities and improve overall 
health outcomes[4].

Classic ML predictive models segment extracted 
photos, and identify regions of interest, e.g., normal 
tissues versus tumor, the process that is called 
“radiomics”. The goal of radiomics is extraction, and 
analysis of a large number of morphological features 
from medical images, e.g., size, shape or diameter, 
to generate imaging biomarkers that can be used 
to improve clinical decision-making, particularly in 
fields of oncology, neurology, and cardiology[5]. 

On the other hand, DL represents a specific ML 
subfield using data algorithms. Artificial neural 
networks (ANNs) and convolutional neural networks 
(CNNs) are types of DL models serving different 
purposes based on their structure and strengths. In 
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ABSTRACT

Artificial Intelligence (AI) was introduced to the field of Medical Parasitology with many applications including 
predicting epidemics, diagnosis, therapeutic approaches, and diseases control. The current systematic 
review was conducted to retrieve published articles in the last decade related to AI applications in Medical 
Parasitology aiming to provide comprehensive data for more advancement in field diagnosis, and drug 
development. The PubMed, Scopus and Web of Science databases were screened systematically for articles 
covering AI in Parasitology published from 2014 to 2024, and SWOT analysis was conducted. In diagnosis, 
results revealed plenty of AI modalities including mobile applications, machine learning (ML) or deep learning 
(DL) based methods, neural network image models, convolutional neural network (CNN), digital microscopy, 
helminth egg analysis platform (HEAP), and transfer learning-based techniques. In addition, screening drug 
libraries opens new avenues for identification of new drug targets, and drug repurposing or combinations for 
better therapeutic regimens. It was concluded that AI modalities can help in making decisions and diagnosing 
parasites in various samples. Moreover, AI represents a crucial step for repurposing available drugs, and 
discovering drug targets for de novo drug development.  

Abbreviations: AI: Artificial intelligence; ANNs: Artificial neural networks; C2Bnet: Composite backbone network; CNN: 
Convolutional neural network; CoSynE: Combination synergy estimation; DL: Deep learning; FA: Fecal analyzer; FCGAN: Fuzzy cycle 
generative adversarial network; HEAP: Helminth egg analysis platform; MALDI-TOF: Matrix assisted laser desorption ionization 
time of flight; ML: Machine learning; NTDs: Neglected tropical diseases; PDDGCN: Parasitic disease-drug association predictor; RT-
DETR: Real time detection transformer; SWOT: Strengths, weaknesses, opportunities and threats; VS: Virtual screening.
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fact, ANNs are simple fully connected networks used for 
tasks involving structured data, like financial modeling, 
or classification tasks with non-image data. On the 
other hand, CNNs are designed for image processing 
tasks. They include convolutional layers that apply 
filters to sections of the image, capturing spatial 
and hierarchical features like edges, textures, and 
complex patterns. This makes CNNs highly effective for 
applications in medical imaging, radiomics, and where 
spatial relationships in data are crucial. Compared to 
ANNs, CNNs use fewer trainable parameters to process 
image data that improve computational efficiency[6]. 
Generally speaking, the idea of those networks is using 
convolutional layers among neuronal layers to translate 
image processing task to specific nuclear function[7].

For AI applications in the field of developing novel 
drug regimens, a computational model was designed 
to predict the associations between parasitic diseases 
and drugs using graph convolutional networks (GCNs), 

i.e., termed PDDGCN. The molecular descriptions of 
anti-parasitic drugs are introduced with the genetic 
markers of the parasitic diseases to be analyzed. 
The predicted outcomes of possible associations are 
investigated or explored in clinical researches to 
reach better therapeutic efficacy[8]. 

In the field of Medical Parasitology, AI facilitated 
remote Parasitology teaching and training 
using virtual microscopy, virtual libraries and 
telemedicine[9]. Based on epidemic prediction, 
genetic, and clinical factors, AI modalities are applied 
in decision formulation for diagnostic applications 
(Fig. 1), and discovering novel therapeutic regimens 
(Fig. 2). Therefore, the current systematic review 
was conducted to retrieve published articles related 
to AI applications in Medical Parasitology in the 
last decade, aiming to provide comprehensive data 
for more advancement in the field of AI in Medical 
Parasitology diagnosis and drug development.

Simple steps of using AI in diagnostic parasitology

(2) Blood film
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(3) Imaging

(4) Data collection(5) Data processing(6) Features 
extraction(7) Identification

Diagnosis 
report

P. vivax ring

Fig. 1. A simplified diagram for AI application in the diagnosis 
of parasitic diseases. Data from patient samples is gathered, 
and digitized. The AI modality assists in identifying, and 
extracting key features of parasites to enable accurate and 
rapid analyses. In the data processing, AI models analyze 
patterns and predict infection types. Illustrated by Taha NM.

Fig. 2. A simplified diagram for AI application in drug discovery 
of parasitic diseases. The AI machines screen available drug 
libraries and the elaborated data are analyzed using parasite 
target molecules, receptors, enzymes, to find the best matched 
compound. Illustrated by Taha NM.
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Screening and selection of literature studies: The 
guidelines of preferred reporting items for systematic 
reviews and meta-analyses (PRISMA) were followed[10]. 
Published articles on the use of AI in Parasitology were 
collected from databases of PubMed, Scopus and Web 
of Science covering the period from 2014 to 2024. 
All studies evaluating AI modalities in diagnosis, and 
drug discovery in Medical Parasitology were included. 
The used keywords included artificial, diagnosis, 
drug repurposing, drug targets, intelligence, parasite, 
parasitic diseases, parasitology, and treatment. 
Exclusion criteria included: 1) grey literature; 2) 
studies that are unavailable in English; 3) articles 
concerned with parasites not pathogenic to human; and 
4) articles searching for vaccines. Figure (3) represents 
the PRISMA flow diagram for the search process. 

Strengths, weaknesses, opportunities, threats 
(SWOT analysis): Following data collection, a 
SWOT analysis was done to explore areas related to 

Fig. 3. PRISMA flow diagram representing the search process for 
AI articles in Parasitology.
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AI application in Parasitology. The main concept of 
SWOT analysis is to help giving practical orientation 
to strategic management. It helps the pinpointing 
of strengths and opportunities associated with AI 
application in Parasitology fields. On the other hand, 
identifying weaknesses and threats at this early stage 
when AI models are progressively attracting medical 
field interests; thus benefiting from its positive points 
and preventing negative outcome[11].

A total of 2071 papers documented AI in Medical 
Parasitology: 63 articles (51 studies for diagnostic 
modalities, and 12 studies for screening drug libraries) 
published from 2014 to 2024 were included in the 
current study.

Modalities used in diagnosis of parasitic diseases
In the current review, 51 articles investigating 

different AI modalities were included to assist in 
classification, identification, and risk prediction 
of parasites in different samples and microscopic 
slides (Tables 1–4). The modalities included mobile 
applications, ML- or DL-based methods, neural 
network image models (artificial and deep), CNN, 
digital microscopy, HEAP, and transfer learning-based 
techniques.

Plasmodium spp. (Table 1)
Several articles illustrated the use of AI models in 

diagnosis of malaria parasites. The most described 
approach was ML-based models that used image 
analysis (e.g., EasyScan Go) technique connected 
to a microscope screening Giemsa-stained blood 
films. According to pre-trained faster region based 
CNNs for blood examination, differentiation between 
infected/uninfected red blood cells and parasitic 
stage specification from unprocessed heterogenous 
smear images were achieved with average precision 
of 0.99[12]. Examination of Giemsa-stained blood 
smears using EasyScan Go yielded 91.1% sensitivity 
and 75.6% specificity[13]. Based on malaria microscopy 
image data from NIH national library of medicine, 
malaria diagnosis of large number of cases was done by 
applying CNN algorithm with accuracy of ~ 97.81%[14]. 
In the ‘AI-based object detection system’ for malaria 
diagnosis (AIDMAN), the Yolov5 model was used for 
detection of plasmodial stages in thin blood smear 
followed by cellular classification. Finally, a CNN 
classifier was applied for diagnosis using blood smear 
images. It resulted in clinical validation accuracy of 
98.44%[15]. A DL-based approach was used for detection 
of the parasite‘s stages in blood smear utilizing positive 
and negative images. Data augmentation was done to 
increase size of database. Then YOLOv8 algorithm was 
used for model training, and parasites were counted 
using a counting formula. This model showed accuracy 
95% in parasite detection[16]. EfficientNet is another 
DL-based approach implemented for malaria detection 
using red blood cell images. This approach showed 
97.57% accuracy in malaria detection[17]. 

Additionally, various algorithms were described 
that allowed discrimination of different Plasmodium 
spp. (P. falciparum, P. malariae, P. knowlesi, P. 
cynomolgi, and P. ovale/vivax) with average 
sensitivity and specificity that exceeded 96.8% and 
99.3%, respectively with best results observed for 
merozoites[18]. In that study, an automated robotized 
light microscope allowed detection of Plasmodium 
infection and the stage of infection through auto-
focusing the sample, and tracking the entire slide. 
Akcakır et al.[19] used another technique that allowed 
them to visualize a quantitative phase image of infected 
erythrocytes in a whole blood sample, enabling them 
to capture thousands of RBCs in a single field. The 
study recorded 91% specificity and 72% sensitivity.

Using a mobile application based on AI modalities 
for malaria diagnosis was described by Oliveira et 
al.[20]. In addition, using mid-infrared spectra to detect 
different species of malaria even in anemic conditions 
was described in a field study in rural Tanzania[21]. 
Moreover, an AI-based model that utilized the whole 
genome sequence data of malaria parasite was 
used for diagnosis of malaria and detection of the 
geographic origin of infections[22].

On the other hand, Picot et al.[23] developed an 
automated hematology analyzer for diagnosis and 
follow up of imported malaria in non-endemic areas, 
with reported sensitivity of 100% and specificity of 
98.39% compared to the microscope. Additionally, 
this model provided accurate differentiation between 
falciparum and non-falciparum parasitemia and 
represented a reliable modality for follow up of 
patients on days 3, 7, and 28. Interestingly, another 
study that was conducted in Paris on imported 
cases of P. falciparum formulated a novel CNN model 
(MALARIS) to accurately estimate parasitemia in 
blood and help the successful management[24]. 

Tissue parasites (Table 2)
For T. cruzi; a motion-based counting system is 

used to quantify motile Trypanosomes in culture 
samples[34]. Another modality, hybrid DL-based AI 
platform (CiRA CORE) utilizes pattern recognition 
highlighting the nucleus and kinetoplast using an 
attention map to diagnose T. cruzi, T. evansi and T. 
brucei[35]. Additionally, an AI program was designed to 
use a hybrid DL technique of object identification and 
classification, and NN backbones on the in-house low-
code AI platform (CiRA CORE). This model can identify 
and classify Trypanosoma species from microscopic 
images[36]. Leishmaniasis was also diagnosed using 
an AI modality that included automated identification 
using AlexNet, a DL algorithm to identify lesions 
photos[37]. Other techniques included ML-based 
systems using the Viola-Jones algorithms[38], 
LeishFuNet (a DL framework)[39] and DeepLeish 
modality[40]. The FCGAN, a transfer learning-based 
microscopic image recognition method, was assessed 
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Table 1. Different AI based methods used in the identification of malaria.

Applied technology Results Ref.
ML that detects infected/uninfected RBCs. Precision 0.99 [12]

ML using EasyScan Go model* Sensitivity 91.1%, Specificity 75.6%, 
Species identification accuracy: P. falciparum (93%), P. vivax (92%). [13]

CNN algorithm based on microscopy image 
data from the National Library of Medicine Accuracy 97.81%. [14]

AIDMAN using YOLOv5 model@ Clinical validation accuracy 98.44%. [15]
DL for accurate detection of parasitaemia. Accuracy 95% with significantly less time spent by malaria experts. [16]
DL for malaria detection Accuracy 97.57%. [17]
Imaging smartphone application and 
robotization of conventional optical 
microscopy

Precision 92.10%, Recall 93.50% recall. [18]

DL using VGG16 model# Specificity 98% Sensitivity 57%. [19]
MicroApp mobile system Accuracy 91%. [20]
ML using mid-infrared spectroscopy Accuracy 90%, Performance unaffected by various levels of anemia. [21]
ML using whole genome data for geo-
classification Accuracy > 90% at a country level. [22]

ML using flow cytometry model and Sysmex 
XN-31 for imported malaria diagnosis Sensitivity 100% Specificity 98.39%. [23]

CNN: Top-classifier CNN (MALARIS) Strong correlation with a coefficient between 0.87 and 0.92. [24]

CNN: Computer aided diagnostic algorithm Promising outcomes.
Manual verification of performance [25]

CNN: Channel squeezed$ and boosted CNN 
image model Accuracy 97.98% [26]

DL algorithm for diagnosis and classification Average analysis time 0.01 seconds.
Recall 96%, Precision 94.9%, Sensitivity 96.8%, Specificity 99.3%. [27]

ML/DL algorithms Classification accuracy 99%. [28]
DL: A real time detection transformer (RT-
DETR) algorithm^ for patient level detection 
(positive or negative)

Accuracy 79.4% Recall 81.9%. [29]

CNN model Batch size decreased F1-score accuracy and average training time. [30]
MALBoost& using gene regulatory network 
analysis

First approach to easily and efficiently allow gene regulation network 
construction. [31]

NN model: Risk prediction with back 
propagation (BP)

Performance of the BP neural network model Sensitivity 71% Specificity 
73.61%. [32]

ML to predict liver stage development in 
vitro using microscopic images Sensitivity 84.6%, Specificity 83.3%. [33]

*: EasyScan Go is a ML-based digital microscope developed to facilitate malaria diagnosis through automated image analysis of blood 
smears. The model combines with microscopy to improve the accuracy, and speed of malaria detection, even in resource-limited 
settings; @: YOLOv5 model is a state-of-the-art DL model specifically designed for object detection tasks. It is part of the YOLO family, 
known for its speed and accuracy in detecting objects in images or videos; #: Visual geometry group 16 is a CNN with 16 weight 
layers used to detect Plasmodium spp. by analyzing blood smear images, or classifying medical images; $: Channel-squeezed is an 
advanced CNN variation designed to optimize computational efficiency and improve performance in image recognition tasks; ^: ML 
model based on transformers architectures, designed for real-time detection of objects to identify and classify objects in images and 
videos, and to determine its exact location; &: MALBoost is a computational tool designed for gene regulatory network analysis to 
focus on integrating ML to study regulatory mechanisms in Plasmodium biological systems.

for identification of T. gondii using Fuzzy Cycle 
Generative Adversarial network with accuracy of 
94%[41]. Additionally, microfilariae of L. loa, M. perstans, 
W. bancrofti and B. malayi were detected using real 
time quantification[42].

Schistosoma spp. (Table 3)
Meulah et al.[43] reported an innovative semi and fully 

automated Schistoscope 5.0 for optically identifying 
and quantifying S. haematobium eggs in urine samples. 

Through AI algorithms for images analysis, comparable 
sensitivities of 80.1% and 87.3% were recorded in semi 
and full automation respectively. Notably, specificity 
elevated from 48.9% in semi-automated to 95.3% in 
fully automated. Similarly, Oyibo et al.[44] developed 
a trained DNN model using dataset with over 5000 
photos of S. haematobium eggs captured from biological 
samples. In addition, Makau-Barasa et al.[45] tested 
automated modalities based on AiDx NTDx  multi-
diagnostic Assist. Microscopy for determination and 
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Table 2. Different AI based methods used in the diagnosis of tissue parasites.

Disease Applied technology Results Ref.

Trypanosomiasis

ML: A motion based counting system* Good correlation of cell counts.  [34]
DL-based Tryp dataset for box 
annotations of microscopy images

Advance research in diagnosing sleeping 
sickness. [35]

Hybrid DL-based AI platform (CiRA 
CORE)@ Effective AI algorithm. [36]

Leishmaniasis

Automated identification using 
AlexNet#, a DL algorithm, to identify 
lesions photos 

Average accuracy: 95.04%. [37]

ML-based system using the Viola-
Jones algorithm$

Macrophages containing Leishmania: Recall 
65%, Precision 50%, Amastigotes outside 
macrophages: Recall 52%, Precision 71%.

[38]

LeishFuNet&, a DL framework Accuracy 98.95 Specificity 98%, Sensitivity 
100%; Precision 97.91%; F1-score 98.92%. [39]

DL method (DeepLeish)^ MAP score: Fine-tuned YOLOV5 73%, Faster 
RCNN: 54%; SSD: 57%. [40]

Toxoplasmosis Transfer learning-based method 
(FCGAN) (Cycle GAN) Accuracy: 93.1-94%. [41]

Filariasis
Microfilariae of W. bancrofti, 
B. malayi, L. loa, M. perstans 

CNN: Real-time quantification using 
mobile microscopy.

Screening algorithm: Precision (94.14%), 
Recall (91.90%), F1 score (93.01%); Species 
differentiation algorithm: Precision (95.46%), 
Recall (97.81%), F1 score (96.62%)

[42]

*: Motion-based counting system for T. cruzi refers to a technological setup designed to quantify motile parasites in a sample; @: CiRA 
CORE is a hybrid DL-based AI platform that is designed for complex biological data analysis; #: AlexNet architecture is a deep CNN for 
image classification and identification tasks; $: Viola-Jones algorithm is a ML-based framework primarily used for object detection in 
images and videos; &: LeishFuNet is a DL framework designed specifically for the detection and classification of Leishmania  (FuNet 
is derived from "fusion network); ^: DeepLeish is a DL method specifically designed for automated detection and classification of 
Leishmania in microscopic images of blood smears; %: FCGAN refers to the uses of fully convolutional layers in both the generator 
and the discriminator networks (this structure allows FCGAN to be efficient, particularly for tasks involving image generation); F1 
score measures predictive performance, and it is calculated from the precision and recall of the test; MAP score: Mean average 
precision; SSD: Support system for detection; RCNN: Region-based CNN. 

quantification of S. haematobium recorded sensitivities 
and specificities of 90.3%-98%, and 89%-99% in semi 
and fully automated modalities, respectively. Meulah 
et al.[43] also supported the role of the Schistoscope, 
as a promising diagnostic modality in detecting and 
quantifying S. haematobium eggs in urine samples with 
a special role in preserved slides and retrospective 
analysis in low-resource settings. Compared to 
conventional microscopy, the Schsitoscope showed 
87.3%[43] and 98%[45] sensitivities in 2 studies, with 
a lower specificity (48.9%) in one study[43]. While 
the second study showed  99% specificity[45], the 
conventional microscopy showed  96.4%. Moreover, 
Schsitoscope revealed 62.9% and 78% sensitivities 
in comparison to composite reference standard (CRS) 
consisting of real time PCR and lateral flow testing.

Intestinal parasites (Table 3)
Accurate diagnosis of intestinal parasites is highly 

crucial, as they represent one of the main etiological 
risk factors of malnutrition, underdevelopment and 
anemia, especially in children living in developing 
countries. However, many limitations are encountered 
in conventional microscopic examination including 
time consuming, lack of equipment and expertise. 
Therefore, the need for time saving and convenient 

approaches in diagnosis would be of great value, and 
updated AI can provide better services to patients in 
remote underdeveloped areas[46,47].

Koydemir et al.[48] investigated a field portable 
system for G. lamblia cysts identification and 
quantification in water samples. The system was 
composed of a smartphone connected to handheld 
fluorescent microscope. Sample cassettes used 5 μm 
filters to capture cysts followed by rapid algorithmic 
analysis. This platform showed 79% efficiency and 84% 
sensitivity with a promising role in monitoring water 
quality in low resource and remote areas. Additionally, 
Mathison et al.[49] used a CNN that could screen negative 
trichrome slides, with reported positive agreement 
98.88% and negative agreement 98.11% based on slide 
level.

Naing et al.[46] proposed a YOLOv4-tiny model, as 
an automated diagnostic tool for detection of stages 
of intestinal protozoan cysts in stool with sensitivity 
of 95.08%. Similarly, Boonyong et al.[47] developed a 
convenient, time saver, fully automated feces analyzer, 
Orienter Model FA280 (People’s Republic of China). 
Reported limitations included high cost and low 
sensitivity.
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Three Yolo approaches Yolov4-tiny, Yolov3, Yolov3-
tiny were designed to recognize 34 intestinal parasitic 
classes including helminthic eggs in human feces. It gave 
96.25% precision and 95.08% sensitivity for Yolov4-
tiny[46]. The performance of fully automated feces 
analyzer Oriental model 280 (FA 280) was compared 
to formalin-ethyl acetate concentration (FECT). 
Although FA 280 is safe, simple, rapid and convenient 
for stool examination for parasitic detection, it is of 
high coast per sample and low sensitivity compared to 
FECT[47]. Ward et al.[50] developed a DL-based detection 
model for soil-transmitted helminths detection. The 
model identifies eggs of A. lumbricoides, T. trichiura, 

S. mansoni and hookworms in Kato-Katz prepared 
stool smears with average precision and recall of 
94.9% and 96.1% respectively. Almost the same as 
previous models; a study by Lundin et al.[51] used an 
image-based AI to diagnose soil-transmitted helminths 
and compared the results with manual microscope-
diagnosed stool samples, collected in 2020 from school 
children in Kwale and Kenya. The sensitivity of the DL 
system reached 80%, 92% and 76% and specificity 
of 98%, 90%, 95% in diagnosing A. lumbricoides, T. 
trichiura and hookworms respectively, with 10% more 
detection of eggs in lightly infected samples compared 
to conventional microscopy. 

Table 3. Different AI based methods used in the diagnosis of schistosomiasis and intestinal parasites.

Disease Applied technology Results Ref.

Schistosomiasis

Schistoscope! 5.0 for optical digital
detection and quantification.

Sensitivity and specificity: Semi- automated 
80.1%, 95.3%, Fully- automated 87.3%, 48.9%. [43]

Automated microscope 
(Schistoscope) with AI.

Robust, stable optical performance of the 
device. [44]

AiDx NTDx@ multi diagnostic assisted 
microscopy.

Semi-automated: Sensitivity: 90.3% Specificity 
89% Fully automated: Sensitivity 98%, 
Specificity 99%.

[45]

Intestinal 
parasites 

Automatic object detection of 
protozoan cysts and helminthic eggs. Precision 96.25%, Sensitivity 95.08%. [46]

Fully automatic fecal analyzer, 
Orienter Model FA280**

Fair overall agreement for the species 
identification. [47]

A field portable system# for 
identification and quantification of G. 
lamblia.

Sensitivity 84%. [48]

AI and digital slide scanning using a 
CNN model. Accuracy 98.88%. [49]

Digital pathology device& for 
automated scanning and detection..

Precision 94.9%, Recall 96.1%, Inference time 
1.58 sec/image. [50]

Digital mobile microscopy
Sensitivity for A. lumbricoides 80%, T. trichiura 
92%, Hookworm 76%, Specificity for A. 
lumbricides 98%, T. trichiura 90%, Hookworm 
95%.

[51]

HEAP–DL based Increased efficiency of manual validation, adapt 
to low-cost computers. [52]

Digitalization of microscopic analysis^ Precision 98.44%, Recall 80.94%. [53]

DL architecture + Composite Back-
bone Network (C2BNet)*

C2BNet showed satisfactory performance, 
with more precise detection of eggs from 2D 
microscopic image.

[54]

CNN based model. Sensitivity 92.2%, Specificity 91.1%, Accuracy 
91.2%. [55]

VETSCAN IMAGYST$ screening. Sensitivity 75.8–100%, Specificity 91.8–100%, 
Time 10–14 min. [56]

Morphometric and ecological data 
analysis using ML% for taxonomic 
identification.

A novel procedure for taxonomic species 
identification supporting future research. [57]

!: A diagnostic device designed for the detection and quantification of S. haematobium eggs in urine samples using optical digital 
microscopy; @: An intelligence integration that focuses on NTDs; #: Refers to an analytical device designed for use outside laboratory 
settings; $: A diagnostic platform designed for veterinary use. It integrates digital imaging and AI to facilitate the identification of 
parasites, bacteria, and other pathogens in animal samples; %: A ML application for processing, and interpretation of data related 
to the physical characteristics and ecological patterns of organisms used for identification and classification; ^: Digitalization of 
microscopic analysis for converting traditional, manual microscopic examination into a digital format using advanced imaging 
and computational technologies; &: A device used for automated scanning and detection that digitizes tissue slides for automated 
examination, analysis, and diagnosis; *: A DL architecture designed to enhance object detection by utilizing multiple backbone 
networks, instead of relying on a single, larger backbone; **: A fully automatic digital fecal analyzer designed for parasite detection. 
It uses advanced automation and AI to perform multiple tasks, such as sample mixing, imaging, and analysis.
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Lee et al.[52] created the helminth egg analysis platform 
(HEAP) for diagnosing and quantifying helminth eggs for 
medical technicians’ assistance, as a good education and 
training resource. Similarly, Dacal et al.[53] used AI for 
detecting soil-transmitted helminths and Wan et al.[54] 
used a DL-based object detection model for parasitic egg 
detection with improvement in the performance of their 
models regarding motion blurring, zooming and focusing 
failure. Utilizing a novel approach, Gan et al.[55] developed 
a CNN for hookworms’ detection in capsule endoscopy 
photos with sensitivity 92.2%, specificity 91.1% and 
accuracy 91.2%. The VETSCAN IMGYST system which 
consist mainly of three components: a simple preparation 
device, a scanner and an analysis software was compared 
as a fecal preparation method to conventional fecal 
flotation techniques and assessd as screening system 
for parasitic detection. It showed a diagnostic sensitivity 
75.8-100% and specificity 91.8-100%[56]. Besides, ML was 
used as a new approach for taxonomic identification via 
egg characterization of capillariid species deposited in 
institutional helminth collection. This approach provided 
a novel technique for taxonomic species identification, 
data integration from central biological collections and 
the logic of AI techniques[57].

Characterization of medically important arthropods 
and snails (Table 4)

Similarly, several AI modalities have been described 
for identification of medically important arthropods, and 
snails. The major health problem of malaria control was a 

target for improvement by applying AI models. Nabet 
et al.[58] developed an AI model that can recognize 
spectral patterns associated with laboratory-reared 
A. stephensi mosquito (aged 0-10 days, 11-20 days 
and 21-28 days), with best prediction accuracies 
of 73%, 89% and 78% respectively. This method 
allowed predicting Anopheles mosquito drivers for 
infection such as mosquito age, blood feeding state 
and detecting the possibility of P. berghei infection.

Besides, ANNs were coupled with matrix-assisted 
laser desorption ionization-time of flight (MALDI-
TOF) mass spectrometry to predict drivers of 
Anopheles mosquito for malaria transmission[58]. The 
AI technology that involves well-trained algorithms 
for arthropods images analysis was established with 
98.8-99.0% precision. In the same context, DL-based 
algorithms were used to identify A. americanum, 
D. variabilis, and I. scapularis ticks with 99.5% 
accuracy[59,60]. Additionally, R. microplus egg hatching 
prediction was done effectively using DL-based 
automatic method[61]. In addition, DL-based visual 
model was tested for intelligent O. hupensis snail 
recognition with precision 90.1%[62].

Modalities used in treatment of parasitic diseases 
(Table 5)

The present study discussed 12 articles dealing 
with drug targets screening for better treatment and 
combination modalities. Targeted parasites included 

Plasmodium spp., Trypanosoma spp., and Schistosoma 
spp. Global morbidities and mortalities from parasitic 
diseases represent a major health concern. Most 
available anti-parasitic drugs are not 100% effective 
with potential development of drug resistance. In 
addition, the available anti-parasitic medications have 
many adverse effects and low safety margins. The 
proposal of new therapeutic targets using AI models 
would accelerate the process of drug discovery[63,64]. 
Utilizing Waikato environment for knowledge analysis 

(WEKA), a free software consisting of collection of 
ML and data analysis, Kumari and Chandra[63] created 
a predictive modality (random forest based model). 
The designed modality is suitble for classification, and 
regression tasks in ML. It constructs predictors used for 
classifying diseases, or identifying risk factors based 
on genetic data, medical images, and clinical records. 
The study recorded 97.94% specificity, and 97.3% 
accuracy. These models can suggest anti-malarial 
candidates from classified vast datasets of compounds. 

Table 4. Different AI based methods used in the identification of snails and arthropods.

Applied technology Results Ref.

A. stephensi
ANNs + matrix assisted laser desorption ioniza-
tion time of flight (MALDI-TOF)@ mass spec-
trometry.

Prediction accuracy: Mosquito age 73%, 
blood feeding 89%, P. berghei infection 
78%. [58]

Arthropods AI technology involving analysis of pictures us-
ing well-trained algorithms# Precision 98.8-99.0%. [59]

A. americanum, D. 
variabilis, I. scapularis. Ticks identification tool using DL algorithms. Accuracy 99.5%. [60]

R. microplus larva DL based automatic method to predict hatching 
based on egg morphology of tick.

No statistical difference. Validated and 
proved method to be effective with consid-
erable reduction in time to obtain results.

[61]

Oncomelania hupensis 
snail

DL-based visual model* for intelligent snail 
recognition.

Precision 90.1%, Sensitivity 91%, Speci-
ficity 97.5%, Accuracy 96.2%, F1 score 
90.51%.

[62]

@: A powerful analytical modality combined with ANNs to characterize biomolecules measuring their mass-to-charge ratio; #: Well-
trained algorithms based on ML models used for accurate predictions or decisions based on a large amount of data for different 
arthropods identification; *: A DL-based visual model for intelligent snail recognition uses ML algorithms to automatically identify 
and classify different species of snails.
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They identified 18 non-toxic compounds out of the 59 
bioactive anti-malarial candidates that inhibit aspartyl 
aminopeptidase (M18AAP) of P. falciparum.

In addition, Williams et al.[64] introduced ‘eve’, a 
robot scientist based on AI models that was designated 
to discover drugs economically. ‘Eve’ re-evaluated 
various available drugs against parasitic targets, and 
one of its validated discoveries was TNP-470, an anti-
cancer with known dihydrofolate reductase inhibition 
activity. It showed a potential anti-plasmodial efficacy 
against P. vivax. Similarly, Mason et al.[65] applied a ML 
approach known as combination synergy estimation 
(CoSynE), to predict interactive combinations using 
data of previous studies and molecular compositions. 

Additionally, new ML quantitative structure-
activity relationship (ML-QSAR) models were validated 
by Borba et al.[66], to detect chemical targets against 
Plasmodium stages and provide explanations for the 
predicted efficacy using explainable AI (XAI). The 
experiment introduced 6 new compounds with dual 
efficacy against different stages. A CNN combined with 
BGRU model showed accuracy 0.9–0.98 in mapping P. 
falciparum mitochondrial proteins, helping identifying 
therapeutic targets[67].

In correlation, Lima et al.[68] applied n integrated AI 
approach assisted by a virtual screening (VS) method. 
Shape-based models and ML were used to detect new 
candidates and protein kinase 7 (PK7) inhibitors were 
proved to have in vitro anti-plasmodial efficacy. Eight 
virtual hits were evaluated and promising candidates 
were identified. LabMol-167 suppressed P. falciparum 
and P. berghei ookinete conversion and showed low 
cytotoxicity. Another PK (PK5) was also proposed as 
therapeutic target for P. falciparum. Zhang et al.[69] also 
presented a predicting model for artemisinin resistance 
using P. falciparum transcriptomic data representing a 
critical step in malaria therapy research. This platform 

set of rules presented a valid model that uses molecular 
biomarkers to predict resistance, and its validity was 
further supported by the first integration within Dream 
of Malaria (DREAM) challenge[70]. 

Moreover, Kwofie et al.[71] examined the use of ML 
in predicting novel anti-schistosomal compounds. The 
DL and ML systems based on deep neural networks 
acting through dual classifications, were proposed. 
Moreira-Filho et al.[72] also focused on innovative 
methodologies to identify anti-schistosomal drug 
candidates. Described approaches included automated 
techniques, fragmented base screening, computer 
aided, and AI-based methods. In the same context, 
Villalta and Rachakonda[73] reported applying structure-
based designs for discovering new drug candidates 
for Chagas disease, accelerating drug discovery 
process and introducing new promising candidates. 
Additionally, Landaburu et al.[74] discussed the value of 
using genomics and integrating chemical and genomic 
data on Trypanosoma and other organisms to enhance 
the process of introducing new therapeutic targets for 
trypanosomiasis treatment. 

Finally, the discovery of the relationships between 
diseases and drugs is crucial for understanding the 
pathogenesis of underlying parasitic diseases. The 
computational methods showed high efficiency in 
identifying and illustrating disease-drug associations, 
however, most of AI methods are based on link-based 
techniques within biomedical, bi-partite networks. 
Parasitic disease-drug association predictor (PDDGCN) 
is a suggested model that can facilitate new drug 
discovery for parasitic diseases. It has been reorganized 
as a central dataset of disease-drug associations of 
parasitic diseases utilizing the most updated databases, 
based on a multi-view graph convolutional network. 
The PDDGCN platform performs 5 state-of-the-art 
techniques as well as 4 ML procedures[8].

Table 5. Articles discussing AI assisted drug libraries screening.

Disease Applied technology Ref.
PDDGCN The PDDGCN platform performs 5 state-of-the-art techniques as well as 4 ML procedures. [8]

Malaria

ML model to discover potential synergistic combinations. [63]
Screening drug libraries for drug repurposing. Validated discovery is TNP-470 (Anti-cancer); a potent 
inhibitor of dihydrofolate reductase. [64]

ML model to discover potential synergistic combinations. [65]
ML quantitative structure-activity relationship (ML-QSAR). [66]
CNN and bidirectional gated recurrent unit (BGRU) to classify mitochondrial proteins. [67]
Integrative AI assisted virtual screening (VS) for new anti-plasmodial targets. [68]
ML for predicting artemisinin resistance. [69]

Schistosomiasis
ML using big data for predicting anti-schistosomal compounds. [71]
Drug candidates’ identification using automated assays, fragment base screening, computer and AI 
based modalities. [72]

Trypanosomiasis
AI in Chagas disease drug discovery. [73]
Chemo-genomic screens for susceptibility or resistance. [74]
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SWOT analysis following data collection: Results 
of SWOT analysis regarding strengths, weaknesses, 
opportunities and threats to AI application in 
parasitology were summarized in table (6). 
Application of AI to the field of Parasitology created 
a revolutionary shift in many aspects. Analysis of 
associated strengths revealed improved diagnostic 
sensitivity of parasitological stages, saving time, ability 
to predict epidemiology of parasitic diseases and 
efficient prediction of therapeutic targets[8,16,64]. On the 
other hand, many weaknesses were reported like the 

huge cost, the need for large data, issues in specificity, 
sensitivity and accuracy, need for extensive training 
and technical expertise, and ethical considerations[9]. 
However, other prospects like increased accessibility 
of service into remote areas and improved patient 
care were discovered[22]. Threats reported were the 
unavailability of accurate or inadequate data for 
training, system bias, poor infrastructure, the threat to 
substituting jobs of parasitologists and data security 
issues[4].

Table 6. The SWOT analysis for AI utilization in Parasitology research.

Strengths Weaknesses Opportunities Threats
• Improved diagnosis sensitivity
• Predicting diseases epidemiology
• Efficient image acquisition and 

processing
• Time saving
• Efficient prediction of 

therapeutic targets

• Huge cost
• Vast data needed
• Inadequate specificity, 

sensitivity and accuracy
• Extensive training required 
• Inadequate technical expertise
• Ethical considerations
• Data security issues

• Accessibility of service in 
remote areas

• Improved patient care
• Availability of information 

technology support
• Expert personnel not 

required

• Lack of accurate data
• Inadequate data for training
• Poor infrastructure
• System bias
• Ethical and accountability 

issues
• Loss of parasitologists jobs
• Security issues and hacking

CONCLUDING REMARKS
• The AI divisions like ML and DL can help in making 

decisions and diagnosing parasitic diseases in various 
samples, that would save time and efforts and is 
especially beneficial in settings where there is lack of 
expertise. 

• The AI represented a crucial step for repurposing 
available drug libraries and discovering drug targets 
for de novo drug development. 

• Modalities of ML-based, and CNN-based models are 
widely applied in diagnosis of malaria with high 
sensitivity, and accuracy. 

• Satisfactory results were obtained in using DL-based 
modalities in diagnosis of trypanosomiasis and 
leishmaniasis. 

• Several AI modalities were used for intestinal 
parasites screening in stool samples and fixed smears, 
however, main limitations included high cost and low 
sensitivity. 

• Schistoscope-based AI modality was used to identify 
and quantify S. haematobium eggs in urine samples 
and tissue slides with promising results.

• The ML-based models opened new avenues in 
drug discovery in malaria, schistosomiasis and 
trypanosomiasis, through predicting therapeutic 
targets and drug combinations.
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